S = 1.561059 reflections 127 parameters H atoms treated using a riding model $w = 1/[\sigma^2(F) + 0.0008F^2]$ Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B) Acta Cryst. (1994). C50, 1329-1333

4-Amino-2-methylthio-6-oxo-1,6-dihydropyrimidine and its 1-Methyl Derivative and 4-Amino-2-methoxy-1-methyl-6-oxo-1,6-dihydropyrimidine and its 5-Nitroso Derivative

JOHN N. LOW

Department of Applied Physics and Electronic & Manufacturing Engineering, University of Dundee, Dundee DD1 4HN, Scotland

SHEELAGH N. SCRIMGEOUR

Department of Chemistry, University of Dundee, Dundee DD1 4HN, Scotland

Clare Egglishaw

Department of Applied Physics and Electronic & Manufacturing Engineering, University of Dundee, Dundee DD1 4HN, Scotland

R. ALAN HOWIE

Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE, Scotland

MIGUEL N. MORENO-CARRETERO AND FRANCISCO HUESO-UREÑA

Departamento Quimica Inorganica, Facultad de Ciencias Experimentales, Universidad de Granada, 23071-Jaen, Spain

(Received 20 October 1993; accepted 25 January 1994)

Abstract

The molecular structures of 4-amino-2-methylthio-6oxo-1,6-dihydropyrimidine trihydrate (AMT, $C_3H_7N_3$ -OS.3H₂O), 4-amino-1-methyl-2-methylthio-6-oxo-1,6dihydropyrimidine (AMEMT, C₆H₉N₃OS), 4-amino-2methoxy-1-methyl-6-oxo-1,6-dihydropyrimidine (AMH, C₆H₉N₃O₂) and 4-amino-2-methoxy-1-methyl-5nitroso-6-oxo-1,6-dihydropyrimidine monohydrate (AMEMONO, C₆H₈N₄O₃.H₂O) show that, as has been reported for analogous compounds, there is extensive electron delocalization in the pyrimidine rings of all four compounds.

Comment

Knowledge of the molecular structure of free pyrimidine ligands is of interest because it permits an understanding

Table 1. Fractional atomic coordinates and equivalentisotropic displacement parameters (Å²)

Um =	$(1/3)\sum_{i}\sum_{j}U_{ij}a^*a^*a_{ij}a_{ij}$
Ueq -	$(1/3) \square_i \square_j \cup_{ij} u_i u_j a_i a_j$

	х	v	Ζ	U_{eq}
N1	0.72058 (9)	0.83028 (9)	0.9271 (4)	0.0379 (14)
C1	0.75047(13)	0.88604 (12)	0.9092 (6)	0.0559 (20)
C2	0.66158 (12)	0.83080(12)	0.8929 (5)	0.0411 (17)
O2	0.63641 (8)	0.87533 (9)	0.8498 (4)	0.0589 (14)
N3	0.63326 (9)	0.77892 (10)	0.9079 (4)	0.0443 (15)
C3	0.57093 (13)	0.77953 (15)	0.8660(7)	0.074 (3)
C4	().65969(12)	0.72629 (12)	0.9550(4)	0.0424 (16)
O4	0.62912 (9)	0.68245 (9)	0.9629 (4)	0.0637 (16)
C5	0.72019(11)	0.72830(11)	0.9949 (4)	0.0350 (14)
C51	0.74753 (12)	0.67496(11)	1.0559 (4)	0.0397 (16)
N5	0.80196 (10)	0.67109 (9)	1.0894 (4)	0.0438 (14)
05	0.81672 (9)	0.61491 (9)	1.1516(4)	0.0618 (15)
C6	0.74957(11)	0.78094 (11)	0.9800 (4)	0.0341 (14)
N6	0.80628 (9)	().78507 (9)	1.0154 (4)	0.0415 (15)

Table 2. Selected geometric parameters (Å, °)

	0	•	
NI-CI	1.465 (4)	C404	1.234 (3)
N1-C2	1.382 (3)	C4C5	1.424 (4)
N1C6	1.371 (3)	C5-C51	1.447 (4)
C2O2	1.218 (3)	C5—C6	1.395 (4)
C2N3	1.368 (4)	C51—N5	1.280 (4)
N3—C3	1.468 (4)	N5	1.408 (3)
N3—C4	1.398 (4)	C6N6	1.335 (3)
C1	116.20 (22)	N3-C4-C5	116.44 (23)
C1N1C6	121.50 (22)	O4C4C5	125.3 (3)
C2-N1-C6	122.27 (22)	C4C5C51	117.20 (23)
N1C2O2	121.3 (3)	C4C5C6	119.35 (23)
N1-C2-N3	116.75 (23)	C51C5C6	123.41 (24)
O2-C2-N3	121.96 (25)	C5-C51-N5	122.72 (24)
C2-N3-C3	116.40 (23)	C51N5O5	110.93 (22)
C2-N3-C4	124.72 (22)	N1-C6-C5	120.40 (23
C3-N3-C4	118.86 (24)	N1-C6-N6	117.94 (22)
N3-C404	118.2 (3)	C5-C6-N6	121.66 (23

Data reduction: *NRCVAX DATRD2* (Gabe, Le Page, Charland, Lee & White, 1989). Program(s) used to solve structure: *NRC*-*VAX SOLVER*. Program(s) used to refine structure: *NRCVAX LSTSQ*. Molecular graphics: *NRCVAX* and *PLUTON92* (Spek, 1992). Software used to prepare material for publication: *NR*-*CVAX TABLES*.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates, torsion angles and complete geometry have been deposited with the IUCr (Reference: HA1109). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Ferguson, G., Gallagher, J. F., Low, J. N., Howie, R. A, Hueso-Ureña, F. & Moreno Carretero, M. N. (1993). Acta Cryst. C49, 2162–2164.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Low, J. N., Howie, R. A, Hueso-Ureña, F. & Moreno-Carretero, M. N. (1992). Acta Cryst. C48, 145–147.
- Spek, A. L. (1992). *PLUTON92. Molecular Graphics Program.* Univ. of Utrecht, The Netherlands.

of the changes in the bond lengths in the proximity of the donor atoms when complex formation takes place. This leads to a better understanding of the spectral and magnetic properties of such metal complexes. Structural studies of free uracil derivatives have been reported by Low, Howie, Hueso-Ureña & Moreno-Carretero (1992, and references cited therein), Hueso-Ureña et al. (1992), Kivekäs, Sundberg, Ruiz & Colacio (1991), Romero-Molina et al. (1990) and Dattagupta, Kroger & Saenger (1977). We now report the crystal structures of four 6-oxopyrimidine derivatives, each with 4-amino and 2methylthio or 2-methoxy substituents.

In most cases the bond lengths indicate that substantial delocalization exists. The only exceptions are the C2=N3 and C6-N1 bonds which exhibit practically pure double- and single-bond character, respectively. This delocalization extends to the exocyclic substituents, especially in the case of the C6-O6 and C4-N4 bonds, which are longer and shorter, respectively, than those corresponding to double C=O and single C-N bonds, except in the case of the nitroso compound in which both these bonds show true double-bond character (Ladd, 1979). This may explain why the $--NH_2$ group does not show the expected chemical properties of a true primary amino group (Brown, 1970).

In the nitroso compound, the presence of the 5-nitroso group, as well as shortening the C6---O6 and C4---N4 bonds, increases the C4-C5 and C5-C6 bond lengths and slightly decreases the N3-C4, C6-N1 and C2-Fig. 3. Molecular drawing of AMH showing the atom-numbering O2 bond lengths.

In both methylthic compounds, the lengths of the C2—S2 bonds appear to be intermediate between those

Fig. 1. Molecular drawing of AMT showing the atom-numbering scheme.

of single and double bonds as a consequence of the polarizability of the S atom. In contrast, as may be expected, the C21-S2 bond lengths show pure singlebond character. In both methoxy compounds, the C2---O2 bonds also appear to have lengths between those of single and double bonds, but the C21-O2 bond lengths are slightly longer than expected for a pure single bond.

Fig. 2. Molecular drawing of AMEMT showing the atom-numbering scheme.

scheme.

Fig. 4. Molecular drawing of AMEMONO showing the atomnumbering scheme.

Z = 4

All these conclusions are in accordance with previously reported data for analogous compounds (Low et al., 1992; Moreno-Carretero, Salas-Peregrin, Colacio-Rodriguez, Sanchez-Sanchez & Nieto-Garcia, 1986; Moreno-Carretero, Ruiz-Sanchez, Romero-Molina, Sanchez-Sanchez & Nieto-Garcia, 1986; Romero-Molina et al., 1990).

Experimental

The crystals were obtained from aqueous solutions following previously reported methods (Baker, Joseph & Schaud, 1954; Hendrix, 1915).

AMT

Crystal data C₅H₇N₃OS.3H₂O $M_r = 211.23$ Triclinic ΡĪ a = 6.848 (4) Å b = 6.865 (2) Å c = 11.763 (4) Å $\alpha = 76.880 (2)^{\circ}$ $\beta = 98.86 (3)^{\circ}$ $\gamma = 111.50 (3)^{\circ}$ V = 499.6 (4) Å³ Z = 2 $D_x = 1.404 \text{ Mg m}^{-3}$

Data collection $R_{\rm int} = 0.019$ Nicolet P3 four-circle $\theta_{\rm max} = 25.00^{\circ}$ diffractometer $h = -8 \rightarrow 7$ ω scans $k = 0 \rightarrow 8$ Absorption correction: $l = -13 \rightarrow 13$ none 1741 measured reflections 1738 independent reflections 1438 observed reflections reflections $[I > 2.5\sigma(I)]$

Refinement

Refinement on F R = 0.036wR = 0.041S = 2.801438 reflections 118 parameters All H-atom parameters refined $w = 1/\sigma^2(F)$

Mo $K\alpha$ radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 14 reflections $\theta = 8.00 - 10.50^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ T = 293 KPrism $0.60\,\times\,0.30\,\times\,0.10$ mm Colourless

2 standard reflections monitored every 50 intensity variation: 2.2%

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²) for AMT

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$$

	х	у	Ζ	U_{eq}
NI	0.3550(3)	0.7087 (3)	0.02900 (16)	0.0339 (12)
C2	0.2674 (4)	0.5046 (4)	0.08754 (20)	0.0312 (15)
S2	0.28555 (11)	0.48164 (11)	0.23947 (5)	0.0411 (4)
C21	0.1773 (5)	0.1970 (4)	0.28788 (24)	0.0560 (20)

N3	0.1784 (3)	0.3392 (3)	0.03780 (16)	0.0347 (13)
C4	0.1781 (4)	0.3828 (4)	-0.08254 (20)	0.0324 (14)
N4	0.0877 (4)	0.2130 (3)	-0.13393 (18)	0.0485 (16)
C5	0.2626 (4)	0.5866 (4)	-0.14828 (20)	0.0349 (15)
C6	0.3561 (4)	0.7583 (4)	-0.09166 (20)	0.0333 (15)
O6	0.4422 (3)	0.9518 (3)	-0.14049(14)	0.0476 (12)
01W	0.3796 (3)	0.0738 (3)	0.62784 (14)	0.0455 (12)
O2W	0.2708 (3)	0.7495 (3)	0.50653 (16)	0.0494 (12)
O3W	0.1255 (3)	0.3147 (3)	0.60304 (16)	0.0505 (12)

Table 2. Selected geometric parameters (Å, °) for AMT

N1C2 N1C6 C2S2 C2N3 S2C21	1.368 (3) 1.383 (3) 1.7471 (24) 1.299 (3) 1.804 (3)	N3C4 C4N4 C4C5 C5C6 C6Q6	1.379 (3) 1.335 (3) 1.394 (3) 1.384 (3) 1.275 (3)
$N1 \cdots O6^{i}$ $OW2 \cdots OW1^{ii}$ $OW2 \cdots OW1^{iii}$ $OW3 \cdots OW2$	2.745 (3) 2.729 (3) 2.805 (3) 2.797 (3)	$\begin{array}{c} 0W3\cdots 0W2^{1\nu}\\ 0W1\cdots 0W3\\ 0W1\cdots 06^{\nu}\\ N4\cdots 0W3^{\nu}\end{array}$	2.743 (3) 2.753 (3) 2.679 (3) 3.043 (3)
$\begin{array}{c} C2N1C6\\ N1C2S2\\ N1C2N3\\ S2C2N3\\ C2S2C21\\ C2N3C4\\ N3C4N4\\ Symmetry codes: (i) 1\\ (iv) -x, 1-y\end{array}$	$\begin{array}{c} 122.20 \ (19) \\ 113.82 \ (17) \\ 124.66 \ (20) \\ 121.52 \ (18) \\ 102.08 \ (12) \\ 114.65 \ (19) \\ 114.82 \ (20) \\ -x, 2-y, -z; \\ 1-z; \ (v) \ x, \end{array}$	N3-C4-C5 N4-C4-C5 C4-C5-C6 N1-C6-C5 N1-C6-O6 C5-C6-O6 ; (ii) $x, 1+y, z;$ (iii) $1-x, y = 1, 1+z;$ (vi) $x, y, z = 1$	123.98 (20) 121.19 (21) 119.43 (21) 115.07 (20) 118.90 (20) 126.02 (21) 1 - y, 1 - z; - 1.
AMEMT Crystal data			
$C_6H_9N_3OS$ $M_r = 171.22$ Monoclinic $P2_1/c$		Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from reflections	m 14
a = 7.594 (5) Å b = 9.821 (6) Å c = 11.271 (6) Å $\beta = 109.83 (4)^{\circ}$ $V = 790 8 (8) \text{ Å}^{3}$		$\theta = 8.00-11.50^{\circ}$ $\mu = 0.34 \text{ mm}^{-1}$ T = 293 K Prism $0.60 \times 0.40 \times 0.40$	0 mm
7 - 4		Colourless	

Data collection

 $D_x = 1.438 \text{ Mg m}^{-3}$

Nicolet P3 four-circle diffractometer ω scans Absorption correction: none 1501 measured reflections 1395 independent reflections 1222 observed reflections $[I > 2.5\sigma(I)]$

Refinement

Refinement on F R = 0.041wR = 0.050S = 4.271222 reflections 100 parameters All H-atom parameters refined $w = 1/\sigma^2(F)$

monitored every 50 reflections intensity variation: 2.0% $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.35 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: none Atomic scattering factors

 $R_{int} = 0.036$

 $\theta_{\rm max} = 25.00^{\circ}$

 $h = -9 \rightarrow 8$

 $k = 0 \rightarrow 11$

 $l = 0 \rightarrow 13$

2 standard reflections

from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B)

S = 2.72

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²) for AMEMT

$$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Ζ	U_{eq}
N1	0.2433 (3)	0.03953 (20)	0.44487 (17)	0.0378 (12)
C1	0.2979 (4)	0.1803 (3)	0.4295 (3)	0.0517 (18)
C2	0.2776 (3)	-0.0164 (3)	0.56174 (20)	0.0352 (14)
S2	0.39421 (10)	0.08976 (7)	0.68882 (6)	0.0472 (4)
C21	0.4181 (5)	-0.0210(3)	0.81904 (24)	0.0681 (21)
N3	0.2332 (3)	-0.14038 (20)	0.58209 (17)	0.0390 (12)
C4	0.1493 (3)	-0.21959 (25)	0.47767 (21)	0.0396 (14)
N4	0.1077 (4)	-0.34830 (23)	0.50220 (20)	0.0570 (15)
C5	0.1123 (4)	-0.1732 (3)	0.35694 (22)	0.0437 (15)
C6	0.1548 (3)	-0.0389(3)	0.33505 (21)	0.0418 (14)
O6	0.1254 (3)	0.01526 (19)	0.23004 (14)	0.0573 (13)

Table 4. Selected geometric parameters (Å, °) for AMEMT

	JUI AI		
NI-CI	1.470 (3)	N3—C4	1.374 (3)
N1-C2	1.368 (3)	C4N4	1.354 (3)
N1-C6	1.419 (3)	C4C5	1.371 (3)
C2-S2	1.750 (3)	C5—C6	1.399 (4)
C2N3	1.305 (3)	C6—O6	1.247 (3)
S2-C21	1.786 (3)		
$N4 \cdot \cdot \cdot O6^{i}$	3.011 (3)	N4···O6 ⁱⁱ	2.939 (3)
C1-N1-C2	121.45 (20)	N3-C4-N4	115.23 (20)
C1-N1-C6	118.46 (20)	N3-C4-C5	122.78 (23)
C2-N1-C6	120.08 (20)	N4-C4-C5	121.98 (22)
N1-C2-S2	115.30 (18)	C4C5C6	120.43 (22)
N1-C2-N3	124.60 (21)	N1-C6-C5	115.29 (20)
S2—C2—N3	120.09 (17)	N1-C6-06	118.42 (23)
C2S2C21	101.07 (13)	C5—C6—O6	126.27 (23)
C2-N3-C4	116.77 (20)		

Symmetry codes: (i)
$$x, -\frac{1}{2} - y, \frac{1}{2} + z$$
; (ii) $-x, y - \frac{1}{2}, \frac{1}{2} - z$.

Mo $K\alpha$ radiation

Cell parameters from 14

 $0.70 \times 0.20 \times 0.20$ mm

 $\lambda = 0.71073 \text{ Å}$

reflections

 $\mu = 0.10 \text{ mm}^{-1}$

T = 293 K

Colourless

 $R_{\rm int} = 0.026$

 $\theta_{\rm max} = 24.95^{\circ}$

 $h = -8 \rightarrow 8$

 $k = 0 \rightarrow 11$

 $l = 0 \rightarrow 12$

2 standard reflections

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

Needle

 $\theta = 10.00 - 12.50^{\circ}$

AMH

Crystal data $C_6H_9N_3O_2$ $M_r = 155.15$ Monoclinic $P2_1/n$ a = 7.399 (4) Å b = 9.964 (6) Å c = 10.773 (6) Å $\beta = 109.96 \ (4)^{\circ}$ V = 746.5 (7) Å³ Z = 4 $D_x = 1.381 \text{ Mg m}^{-3}$

Data collection

Nicolet P3 four-circle diffractometer ω scans Absorption correction: none 1416 measured reflections 1317 independent reflections 883 observed reflections $[I > 2.5\sigma(I)]$

Refinement

Refinement on FR = 0.042wR = 0.039

Extinction correction: none
Atomic scattering factors
from International Tables
for X-ray Crystallography
(1974, Vol. IV, Table
2.2B)

Table 5. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²) for AMH

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	y		z	U_{eq}
N1	0.2108 (3)	0.5356	0 (21)	0.96443 (21)	0.0448 (14)
C1	0.1447 (5)	0.6758	(3)	0.9589 (3)	0.0611 (21)
C2	0.2990 (4)	0.4730	(3)	1.08211 (24)	0.0453 (18)
02	0.3136 (3)	0.5524	7 (19)	1.18476 (18)	0.0584 (12)
C21	0.4012 (5)	0.4937	(3)	1.3140 (3)	0.0768 (23)
N3	0.3628 (3)	0.3512	6 (23)	1.09781 (19)	0.0457 (14)
C4	0.3358 (4)	0.2793	(3)	0.98429 (25)	0.0430 (17)
N4	0.3991 (3)	0.1515	8 (23)	1.00274 (21)	0.0576 (16)
C5	0.2490 (4)	0.3329	(3)	0.86099 (24)	0.0486 (19)
C6	0.1818 (4)	0.4648	(3)	0.8457 (3)	0.0476 (18)
06	0.0978 (3)	0.5232	6 (20)	0.73910 (16)	0.0652 (15)
				<u>^</u>	
Table 6	. Selected g	geometric j	param	eters (Å, °)	for AMH
N1-C1		1.474 (4)	N3-C4	1	1,372 (3)
N1-C2		1.363 (3)	C4N4	1	1.347 (4)
N1—C6		1.412 (3)	C4—C5	;	1.371 (4)
C202		1.334 (3)	C5—C6	5	1.395 (4)
C2N3		1.292 (4)	C6—O6	5	1.248 (3)
O2—C21		1.444 (4)			
$N4 \cdot \cdot \cdot O6^i$		3.021 (3)	$N4 \cdot \cdot \cdot O$	96 ⁱⁱ	2.909 (3)
C1N1(22	121.20 (22)	N3-C4	⊷N4	115.14 (22)
C1N1	C6	119.41 (22)	N3-C4	⊢C5	122.49 (24)
C2N1	C6	119.39 (23)	N4—C4	I—C5	122.36 (23)
N1-C2-4	02	112.18 (25)	C4—C5	C6	120.78 (23)
N1-C2-l	N3	126.08 (23)	N1—C6	б—C5	115.23 (23)
02—C2—l	N3	121.74 (23)	N1—C6	— 06	118.3 (3)
C2	221	116.19 (22)	C5—C6		126.46 (24)
C2N3(24	116.03 (22)			
Symme	etry codes: (i)	$\frac{1}{2} + x, \frac{1}{2} - y$	$y_{1,\frac{1}{2}} + z;$ ((ii) $\frac{1}{2} - x, y - x$	$\frac{1}{2}, \frac{3}{2}-z.$
AMEMO	ONO				
Crystal a	lata				
C ₆ H ₈ N ₄ C	$D_3.H_2O$		Mo Ka	α radiation	
$M = 20^{\circ}$	2 1 7		$\lambda = 0$	71072 Å	

$70 \times 0.20 \times 0.20$ mm	$C_6 \pi_8 N_4 O_3 \cdot \pi_2 O_3$	No $\mathbf{A}\alpha$ radiation
	$M_r = 202.17$	$\lambda = 0.71073 \text{ Å}$
Siouriess	Triclinic	Cell parameters from 14
	$P\overline{1}$	reflections
	a = 7.415 (2) Å	$\theta = 10.00 - 12.00^{\circ}$
	b = 7.419 (3) Å	$\mu = 0.10 \text{ mm}^{-1}$
$_{\rm nt} = 0.026$	c = 8.759 (3) Å	T = 293 K
$_{\rm max} = 24.95^{\circ}$	$\alpha = 92.24$ (3)°	Prism
$= -8 \rightarrow 8$	$\beta = 92.55 (3)^{\circ}$	$0.50 \times 0.50 \times 0.50$ mm
$= 0 \rightarrow 11$	$\gamma = 69.21 \ (3)^{\circ}$	Violet
$= 0 \rightarrow 12$	V = 449.9 (3) Å ³	
standard reflections	Z = 2	
reflections	$D_x = 1.492 \text{ Mg m}^{-3}$	
intensity variation: 2.5%	Data collection	
	Nicolet P3 four-circle	$R_{\rm int} = 0.004$
	diffractometer	$\theta_{\rm max} = 24.95^{\circ}$
$\Delta/\sigma)_{\rm max} < 0.001$	ω scans	$h = -8 \rightarrow 8$
$\rho_{\rm max} = 0.14 \ {\rm e} \ {\rm \AA}^{-3}$	Absorption correction:	$k = 0 \rightarrow 8$
$\rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$	none	$l = -10 \rightarrow 10$

1580 measured reflections	2 standard reflections
1310 observed reflections	reflections
$[I > 2.5\sigma(I)]$	intensity variation: 3.0%

Refinement

Refinement on F	$(\Delta/\sigma)_{\rm max} = < 0.001$
R = 0.041	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.047	$\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$
S = 3.92	Extinction correction: none
1310 reflections	Atomic scattering factors
127 parameters	from International Tables
All H-atom parameters	for X-ray Crystallography
refined	(1974, Vol. IV, Table
$w = 1/\sigma^2(F)$	2.2B)

Table 7. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for AMEMONO

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	х	у	Z	U_{eq}
N1	0.30316 (23)	0.28987 (22)	0.36718 (18)	0.0374 (9)
C1	0.3439(3)	0.4186(3)	0.25940 (25)	0.0517 (14)
C2	0.3167 (3)	0.1075 (3)	0.32383 (21)	0.0332 (10)
O2	0.37205 (21)	0.06273 (19)	0.18203 (14)	0.0441 (9)
C21	0.3656 (4)	-0.1192 (3)	0.11716(23)	0.0536 (14)
N3	0.28479 (22)	-0.01775 (21)	0.40813(17)	0.0340 (9)
C4	0.2262(3)	0.0379 (3)	0.55264 (20)	0.0308 (10)
N4	0.19334 (24)	-0.09096 (22)	0.63486 (18)	0.0392 (10)
C5	0.2032 (3)	0.2275 (3)	0.61155 (20)	0.0355 (10)
N5	0.1429(3)	0.30054 (24)	0.75182 (19)	0.0458 (10)
O5	0.10369 (23)	0.19212 (21)	0.84278 (16)	0.0549 (10)
C6	0.2457 (3)	0.3593 (3)	0.51437 (21)	0.0391 (12)
O6	0.2321 (3)	0.52428 (21)	0.55220 (18)	0.0624 (11)
01 <i>W</i>	0.0973 (3)	0.70649 (24)	0.87500 (18)	0.0751 (13)

Table 8. Selected geometric parameters (Å, °) for AMEMONO

N1-C1	1.482 (3)	C4—N4	1.3140 (24)
N1-C2	1.3605 (24)	C4—C5	1.434 (3)
N1-C6	1.3965 (25)	C5—N5	1.3518 (24)
C202	1.3182 (22)	C5—C6	1.444 (3)
C2—N3	1.3002 (24)	N505	1.2663 (24)
O2—C21	1.4594 (25)	C606	1.2257 (23)
N3—C4	1.3573 (23)		
$N4 \cdot \cdot \cdot O6^i$	2.8337 (23)	OW1···N5	3.067 (3)
N4· · · O5	2.6433 (23)	OW1···O5 ⁱⁱ	2.8784 (23)
C1-N1-C2	121.08 (16)	N3-C4-C5	121.18 (16)
C1—N1—C6	119.14 (15)	N4-C4-C5	122.24 (16)
C2N1C6	119.76(15)	C4C5N5	126.66 (17)
N1-C2O2	112.82 (16)	C4-C5-C6	118.68 (16)
N1-C2-N3	126.47 (17)	N5-C5-C6	114.66 (16)
O2-C2-N3	120.70 (16)	C5-N5-O5	117.80 (16)
C2O2C21	117.18(15)	N1-C6-C5	116.03 (15)
C2N3C4	117.84 (15)	N1-C6-06	119.41 (18)
N3—C4—N4	116.57 (15)	C5—C6—O6	124.55 (18)

Symmetry codes: (i) x, y - 1, z; (ii) -x, 1 - y, 2 - z.

Data collection and cell refinement: Nicolet P3 software. Data reduction: NRCVAX (Gabe, Le Page, Charland, Lee & White, 1989). Structure refinement: NRCVAX. Program used to solve structures: SHELX86 (Sheldrick, 1985). Programs used to produce molecular graphics: PLUTON92 (Spek, 1992).

JNL thanks Professor George Ferguson for his help.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: HA1089). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Baker, B. R., Joseph, J. P. & Schaud, R. E. (1954). J. Org. Chem. 19, 631–633.
- Brown, D. J. (1970). Editor. The Pyrimidines, Suppl. 1. The Chemistry of Heterocyclic Compounds, No. 16, consulting editor A. Weissberger. New York: Wiley Interscience.
- Dattagupta, J. K., Kroger, M. & Saenger, W. (1977). Chem. Ber. 110, 353-354.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Hendrix, J. (1915). J. Biol. Chem. 20, 153-155.
- Hueso-Ureña, F., Moreno-Carretero, M. N., Romero-Molina, M. A., Salas-Peregrin, J. M., Sanchez-Sanchez, M. P., Alvarez de Cienfuegos, G. & Faure, R. (1992). J. Inorg. Biochem. In the press.
- Kivekäs, R., Sundberg, M. R., Ruiz, J. & Colacio, E. (1991). Acta Cryst. C47, 1512-1515.
- Ladd, M. F. (1979). Structure and Bonding in Solid State Chemistry. New York: John Wiley.
- Low, J. N., Howie, R. A., Hueso-Ureña, F. & Moreno-Carretero, M. N. (1992). Acta Cryst. C48, 145–147.
- Moreno-Carretero, M. N., Salas-Peregrin, J. M., Colacio-Rodriguez, E., Sanchez-Sanchez, M. P. & Nieto-Garcia, F. (1986). Acta Cryst. C42, 407-410.
- Romero-Molina, M. A., Moreno-Carretero, M. N., Ruiz-Sanchez, J., Sanchez-Sanchez, M. P. & Nieto-Garcia, F. (1986). *Inorg. Chem.* 25, 1498–1501.
- Romero-Molina, M. A., Salas-Peregrin, J. M., Lopez-Garzon, R., Gutierrez-Valero, M. D., Pannerselvam, K., Chacko, K. K., Aoki, K. & Yamazaki, H. (1990). *Inorg. Chim. Acta*, **172**, 253–257.
- Sheldrick, G. M. (1985). SHELX86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger & R. Goddard, pp. 175–189. Oxford Univ. Press.
- Spek, A. L. (1992). PLUTON92. Molecular Graphics Program. Univ. of Utrecht, The Netherlands.

Acta Cryst. (1994). C50, 1333-1335

Acetamide Hydrochloride

LING-KANG LIU, FEN-TAIR LUO AND LI-CHEN HSIEH

Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529

(Received 17 December 1993; accepted 14 February 1994)

Abstract

The title compound, acetamide hydrochloride (I), $C_2H_6NO^+.Cl^-$, has a planar network of infinite hydrogen bonds connecting the $C_2H_6NO^+$ cation to three different Cl^- anions and *vice versa*, *via* one O—H····Cl and two N—H····Cl hydrogen bonds.